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The modified mild-slope equation 
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A modified version of the mild-slope equation is derived and its predictions of wave 
scattering by two-dimensional topography compared with those of other equations 
and with experimental data. In particular, the modified mild-slope equation is shown 
to be capable of describing known scattering properties of singly and doubly periodic 
ripple beds, for which the mild-slope equation fails. The new equation compares 
favourably with other models of scattering which improve on the mild-slope equation, 
in that it is widely applicable and computationally cheap. 

1. Introduction 
The scattering of linear water waves by bed topography is governed by Laplace’s 

equation together with appropriate boundary and radiation conditions. Analytic 
solutions are rare when there is any departure from the constant depth case and usu- 
ally exist only for simple geometries involving horizontal and/or vertical boundaries. 
Consequently, a number of approximations to the boundary value problem have 
been proposed. In one class of approximations the vertical coordinate is removed 
by integration over the depth, thus reducing the dimension of the problem by one. 
Berkhoffs mild-slope equation (1973, 1976) is the result of such a procedure, and 
seeks to approximate the propagating wave mode. 

It has been observed by a number of authors that the mild-slope equation can fail 
to produce adequate approximations for certain types of topography, such as ripple 
beds. These consist of a finite patch of small-amplitude sinusoidal ripples set in an 
otherwise horizontal bed. It is perhaps more accurate to refer to the bed perturbations 
as bars rather than ripples, but we follow what has become the standard terminology. 
To overcome the deficiency in the mild-slope equation, Kirby (1986) presented a 
model in which the bed profile consists of a slowly varying (mild-slope) component 
on which is superimposed a rapidly varying component of small amplitude. Applying 
the vertical integration process led Kirby to what is now called the extended mild- 
slope equation, which he verified for ripple beds by comparing numerical results with 
wave-tank data of Davies & Heathershaw (1984). 

Another approximation which has proved successful for ripple bed problems is 
the ‘successive-application matrix model’ of OHare & Davies (1993), in which the 
topography is replaced by a succession of short horizontal steps. The scattering 
properties of the whole topography are then approximated by aggregating the scat- 
tering properties of the individual steps. More recently, Massel (1993) has proposed 
a new approximation which includes evanescent modes and is therefore capable of 
dealing with relatively steep bed profiles. Guazzelli, Rey & Belzons (1992) also in- 
clude evanescent modes in conjunction with a step-wise approximation of the bed, 
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and produce theoretical results in good agreement with experimental data for doubly 
periodic sinusoidal beds. 

In the present paper we return to the relatively simple type of approximation used 
by Berkhoff (1973, 1976) and Kirby (1986) and present a new form of the mild-slope 
equation. This equation, which contains as special cases the usual mild-slope equation 
and Kirby’s extended mild-slope equation, was first derived by Chamberlain (1991). 
We refer to it as the modified mild-slope equation. 

Two related derivations of the new equation are given. The first exploits a varia- 
tional principle and is similar in approach to the recent work of Miles (1991). The 
second derivation is a direct application of the classical Galerkin method, which 
evidently formalizes the vertical integration method used by Berkhoff (1973, 1976) 
and others. Our approach clearly distinguishes the two approximations which to- 
gether lead to the mild-slope equation. We invoke only one of these approximations, 
the replacement of the velocity potential by a one-term trial function based on the 
propagating wave mode over a flat bed. We do not, however, take the further step 
of discarding terms which are second-order on the basis of the mild-slope assump- 
tion lVhl << kh, where h is the undisturbed fluid depth and k is the corresponding 
wavenumber. 

One result of retaining all of the terms produced by the Galerkin approximation 
is that the modified mild-slope equation accurately predicts wave scattering by ripple 
beds. A simplified form of the new equation, derived in $3, may be compared with 
Kirby’s approximation (1986), and is computationally more efficient for calculating 
scattering by ripple beds. 

2. The modified mild-slope equation 
We suppose that incompressible, homogeneous fluid is in irrotational motion over 

a bed of varying quiescent depth h(x,y) ,  x and y denoting horizontal Cartesian 
coordinates. The vertical coordinate, z, is measured positively upwards with the 
undisturbed free surface at z = 0. 

An harmonic time dependence can be removed from the velocity potential @ which 
describes the fluid motion, by setting 

WX, Y ,  z, t )  = Re (m Y ,  z)e-iuf) Y 

where o is an assigned angular frequency. Then the function 4 satisfies the usual 
equations of linearized wave theory, namely 

v24 = 0 (4 < z < O), 
4 z  - v4 = 0 ( z  = O), 

62 + Vhh &c$ = 0 (Z = -h), 

where v = a2/g, V = ( d / d x , a / d y , a / d z )  and Vh = (d /dx ,a /ay) .  The free surface 
elevation is given by c ( x , y , t )  = Re (q(x,y)e-iuc) where 

The specification of 4 is completed by the addition of conditions on lateral 
boundaries or a radiation condition if the fluid extends to infinity. These further 
conditions do not concern us for the present as our immediate objective is to reduce 



The modiJed mild-slope equation 395 

the dimension of the boundary value problem for 4 by approximating its dependence 
on the z-coordinate. 

We present two equivalent ways of achieving the desired approximation. 
First we consider the variational principle 6 L = 0 where L is the functional defined 

by 

Here D denotes a domain in the plane z = 0, with boundary C. As indicated above, we 
need not specify D more closely for present purposes and we may consider variations 
which vanish on the lateral boundary C x [-h,O]. It then follows that L is stationary 
at y = 4 if and only if 4 satisfies (2.1), (2.2) and (2.3). 

The variational principle 6 L  = 0 can therefore be used to generate approxima- 
tions to solutions of (2.1), (2.2) and (2.3). In particular, we can seek the one-term 
approximation y = 4 of the form 

V(X, Y, 2) = 4o(x, YMX, Y, z) ,  (2.5) 

where w is a given function and 40 is determined by imposing 6 L  = 0 for all variations 
in 4o which vanish on C x [-h,O]. After some straightforward manipulation it is 
found that $0 must satisfy 

& s_0, W2dZvh40 + (L  wwzzdz + R(w) 40 = 0, ) 

s_0, 

(2.6) 

where 

R(W) = wV2wdz - [W(Wz - VW)],,o + [W(Wz -k &h VhW)];=-h. 

The association between variational principles and Galerkin’s method suggests an 
alternative derivation of (2.6). Suppose we set aside (2.5) for the moment and seek 
a weak solution y = 4 of (2.1) in the sense that the residual V 2 y  is required to be 
orthogonal to a given function w. Thus 

which gives 

- [ ~ ( w z  - vW)lr=0  + [WW; + WVhh &w],=-,, dxdy = 0 (2.7) 

when the boundary conditions (2.2) and (2.3) are imposed on y. Equation (2.7) 
is a weak form of the boundary value problem (2.1), (2.2) and (2.3) and can be 
used to generate any desired approximation v, = 4. In particular, we can return to 
(2.5) and seek the particular Galerkin approximation v, =  OW. Use of the identity 
wV:(40w) = v h  w2&40 + 40wV:w followed by some manipulation leads again to the 
equation (2.6) for 40, whatever the domain D. 

The development so far holds for any w, but we now make a particular choice of 

1 



396 P. G. Chamberlain and D. Porter 

this function. Following the corresponding step in the derivation of the mild-slope 
equation we take 

w = iawo/g, WO(X, y, z) = sech(kh) cosh(k(z + h)) (2.8) 

where the local wavenumber k = k(x, y) is the real, positive root of the local dispersion 
relation 

v = k tanh(kh) (2.9) 
corresponding to the depth h(x,y). Over a flat bed, 4 = wo(z)40(x,y) is the only 
solution of (2.1), (2.2) and (2.3) which corresponds to propagating surface waves. The 
choice (2.8) with (2.9) ensures that the approximate solution 4 = $OW satisfies the 
free surface condition and is such that $0 = q,  the complex form of the free surface 
elevation, by virtue of (2.4). 

It is convenient at this point to note that (2.9) defines the function k = k(h),  at 
each fixed value of the angular frequency a. This allows us to rewrite wo in the form 

(2.10) wo(h,z) = sech(kh)cosh(k(z + h)). 

We also introduce the function 

1 
2k 

0 

uo(h) = 1, widz = - tanh(kh) (2.1 1)  

so that guo is the product of the local phase velocity a / k  and the local group velocity 
daldk, where the depth is h. 

The result of substituting (2.8) into (2.6) may then be written in the form 

v h  uovh40 + ( k 2 h  -k r)$o = 0 (2.12) 

where r = R(w0) is given by 

2 r(h) = Wovh wodz + vhh * [wOy~wO]z=-h. L 
The equation (2.12) coincides with the familiar mild-slope equation if the term r(h) 

is omitted. The deletion of r is usually justified by noting that r = o(lvhh12,vh2h) 
(see (2.15) below), which is assumed to be a negligibly small term on the basis of the 
mild-slope approximation. 

However, we do not need to make the mild-slope approximation in the sense of 
neglecting r .  As our derivation of (2.12) makes clear, the two approximations $ NN +OW 

and r NN 0 are essentially independent and we may suppose that the retention of r 
widens the scope of (2.12), which we refer to as the modified mild-slope equation. 
This description acknowledges that the use of (2.12) is still confined to slowly varying 
topography, because of the approximation 4 = $OW. More accurate approximations, 
of the form 4 NN C:=O$n~, for N > 0, are required to remove the mild-slope 
restriction. 

Miles (1991) showed how an existing variational principle for (nonlinear) free 
surface flows, due to Luke (1967), can be modified to apply to linearized free surface 
problems. Miles then used the modified variational principle (which differs from the 
present 6 L  = 0 in that it is specific to a real-valued potential) to derive the mild-slope 
equation, evidently by discarding a term corresponding to r in the process. 

Other derivations of the mild-slope equation, notably those by Berkhoff (1973, 
1976), use an approximation equivalent to 4 NN $OW together with averaging over the 
fluid depth to remove the dependence on z. This vertical averaging procedure may 
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be identified with the Galerkin formulation outlined above, although it is not usually 
presented in this direct way. 

In order to use (2.12) in numerical calculations, it is convenient to evaluate r 
explicitly. The evaluation is expedited by deducing from (2.9) that 

(2.13) k’(h) = -2k2(2kh + sinh(2kh))-’ 

and from (2.10) that 

= k’(h)sech(kh) (z sinh(k(z + h)) - k-’ sinh(kh) sinh(kz)) . (2.14) 

It follows that &WO = wl&h and hence that 

Wov,’Wo = WIWoVh2h + Vhh ’ vh(W1Wo)  - W:(vhh)2, 

leading to 

where 
r(h) = ul(h)V?h + u2(h)(Vhh)’, 

0 

-h 
ul(h) = / WlWOdZ, 

These integrals are easily evaluated to give 

(2.15) 

(2.16) 

(sinh(K) - K cosh(K)} , 
sech2(kh) 

ul(h) = 4(K + sinh(K)) 
ksech2( kh) { K4 + 4K3 sinh(K) - 9 sinh(K) sinh(2K) 

U2(h) = 12(K + sinh(K))3 

+ 3 K ( K  + 2 sinh(K))(cosh2(K) - 2 cosh(K) + 3)) , 

where the abbreviation K = 2kh has been used. 

3. Ripple beds 
The scattering of water waves by a finite patch of small-amplitude sinusoidal ripples 

set in an otherwise horizontal bed has recently received a good deal of attention. As 
such ripple beds can fall outside the scope of the mild-slope equation, Kirby (1986) 
derived an alternative equation which allowed for a rapidly varying, small-amplitude 
bedform to be superimposed on a slowly varying component of topography. 

When applied to ripple beds, Kirby’s extended mild-slope equation has the advan- 
tage that the wavenumber does not vary with the ripples and only one solution k(h) 
of (2.9) is required, namely that corresponding to the mean still-water depth of the 
ripples. In contrast the wavenumber k(h) in the modified mild-slope equation follows 
the topography. We therefore derive a simpler, and computationally cheaper, version 
of (2.12) which may be applied to ripple beds. 

It is convenient, for the purpose of comparison, to adopt a notation very similar 
to that of Kirby (1986), first by writing if in place of h and then setting 

h = h - 6 .  (3.1) 

Here h = h(x,y) represents a slowly varying component of the depth, in the sense of 
the mild-slope assumption, and 6 (x, y) represents a small-amplitude, rapidly-varying 

I 
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oscillation about the depth h. We therefore discard terms O(Vj:h, IVhhl’) in this section, 
in accordance with the usual mild-slope approximation, as well as those 0(S2). 

Using (2.10), (2.11) and (2.14) we have 

wi(h - 6, z)dz 

a o  
= ~ ( h )  - 6- 1 wi(h,z)dz + O(S2) 

a h  -h 
0 

= ~ ( h )  - 6 (2 Lh wo(h,z)wl(h, z)dz + sech2(kh) 

= ~ ( h )  - 6 (2ul(h) + sech2(kh)) + 0(S2) 

where the notation of (2.16) has been employed. We also have k(h) = k(h)  - Sk’(h) + 
O(S2), where k’ is given by (2.13), and, from (2.15), r (h )  = ul(h)v~6+O(Vh2h, IVhh12,62). 
Replacing h by h - 6 in (2.12), and using the above expansions together with the 
identity 2k’(h)&(h) + k(h)sech2(kh) = 0, we find that 

& (ug - 6(2ul + sech2(kh)))Yt$, + (k2(uo - 26ul)  - U~V;S)$~ = 0, (3.2) 

neglecting the terms indicated above, where UO, u1 and k are evaluated at h. In 
particular, these quantities are constant for ripple beds, where h is a constant and 6 
represents the only depth variation. 

The version of the usual mild-slope equation which corresponds to (3.2) is obtained 
by deleting the term arising from r(h) and is therefore 

vh (Uo - 6(2Ul + sech2(kh)))vh$o + k 2 ( ~  - 26Ul)$o = 0. (3.3) 

Kirby’s extended mild-slope equation, expressed in the present notation, is 

v h  Uovh$o - SeCh2(kh)Vh ’ 6vh$o + k2W$o = 0. 

This can be written as 

Rt * (ug - 6SeCh2(kh))vh$o + k2W$o = 0 (3.4) 

if terms O(SVj,h) are neglected, an approximation consistent with Kirby’s derivation. 
To see how (3.4) fits into the present framework, we first note that (3.2) can be 

derived directly from (2.6), rather than via (2.10). This is achieved if we first replace 
-h with -h + 6 in the integration limits and in the bed evaluation term of (2.6) and 
set w = wo(h - 6, z). Expanding in powers of 6 and neglecting terms O(Vlh, lVhh12, S2) 
reduces the resulting equation to (3.2). If this procedure is repeated with w = wo(h,z) 
used in place of w = wo(h - 6,z), we merely omit the term u1, which arises from the 
O ( 6 )  correction w1 = dwo/ah in WO, and we arrive therefore at (3.4) instead of (3.2). 
This hybrid process of replacing h by h - 6 only in selected terms of (2.6) is not as 
inconsistent as it may appear to be. It corresponds to the usual derivation of the 
mild-slope equation but with the bed condition modified at the outset to account for 
variations 6 about h, and this is indeed the basis of Kirby’s derivation. 

4. Numerical experiments and discussion 
For the purpose of comparison with existing results we consider the scattering of 

plane harmonic waves normally incident on a given bed profile h = h(x).  We assume 
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where 
In these circumstances, all of the model equations under consideration can be 

written in the form 

(4.1) 
where Re(+o(x)e-'"') is an approximation to the surface elevation; the prime here 
denotes differentiation with respect to x. The functions u ( x )  and u(x) are such that 
(4.1) reduces to 4; + k240 = 0 where h is a constant and we therefore take 

and hl are given constants and L is also assigned. 

(u&J' + v 4 0  = 0, 

for a wave of unit amplitude incident from the left and 

(x < O), 
(x > L), 

T - & x  

4 0 b )  = { ,15,, + Re'klX 

for a wave of unit amplitude incident from the right, where ko = k ( b )  and kl = k(h1) .  
The complex amplitudes &, R, of the reflected waves and Tc, T, of the transmitted 
waves are the quantities of prime interest here. 

They are obtained by solving (4.1) in the interval (O,L), for a given h(x) and a 
choice of u and u corresponding to the wave model being examined, and enforcing 
continuity of 40 and yo at x = 0 and x = L. Details of the solution procedure 
employed may be found in Chamberlain & Porter (1995) and we merely describe the 
main features here. 

We express the solution of (4.1) for 0 < x < L in terms of two linearly independent 
solutions of the equation, each generated by an initial value problem. This device 
detatches the essential structure of the problem from the numerical calculations, which 
are thereby reduced to the simplest possible form. The required values &, R,, 7't 
and T, are then given in terms of boundary values of the two computed linearly 
independent solutions. 

A separate aspect of calculating the scattered wave amplitudes involves the notion 
of topography decomposition, introduced by Chamberlain (1995) and extended by 
Chamberlain & Porter (1995). Thus, the complete topography on (0, L) may be 
decomposed into arbitrary sections and the overall scattered wave amplitudes deter- 
mined from those of the individual sections. The process of combining the scattered 
wave amplitudes for two contiguous sections to form the net scattered wave ampli- 
tudes in general requires a knowledge of left- and right-wave scattering, even if one 
of these is not needed in the overall solution. 

Decomposition is at its most powerful when dealing with periodic topography such 
as ripple beds, for then the overall scattering properties of N ripples can be assembled 
from a knowledge of the scattering characteristics of one ripple. Using R Y )  to denote 
the reflected wave amplitude for a left-incident wave on a sequence of N ripples, and 
so on, Chamberlain & Porter (1995) show that 

R ~ N )  = R:') sin(N6) (sin(N6) - T!') sin(N - ip}-', 
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FIGURE 1. Comparison of computed reflection coefficients for Booij’s test problem. 

with corresponding formulae for the other wave amplitudes. 
number 8 is defined by 

Here the complex 

In addition to the obvious computational saving which they produce, these formulae 
allow the mechanism which produces resonance, referred to below, to be identified. 
The details of this analysis may be found in Chamberlain & Porter (1995). 

4.1. Booij’s problem 
In order to examine the range of validity of the mild-slope equation, Booij (1983) 
considered the scattering of plane waves incident normally on a depth profile in which 
the still water depth is reduced by a factor of one-third across a plane sloping section 
(i.e. h,  = ho/3 and h ( x )  = b(l - 2x/3L) for x E [O,L]). Using the finite element 
method, Booij found approximations for the reflected amplitude IRI corresponding 
to the mild-slope equation and also computed values of IRI corresponding to the 
linearized problem consisting of (2. l), (2.2), (2.3) and appropriate radiation conditions. 
A comparison of these two sets of data led Booij to conclude that the mild-slope 
equation is valid for slopes of 1 in 3 and less (i.e., in our notation, for values of 
a*L/g > 1.2). Here we compare the modified mild-slope equation (2.12) with the 
mild-slope equation ((2.12) with the term r deleted) for Booij’s test problem. Figure 1 
shows this comparison in terms of IRI plotted against w, = a2L/g. The approximation 
obtained using the mild-slope equation is shown as a solid line while the modified 
approximation is given as a broken line; Booij’s results for the linearized problem 
described above are shown as crosses on the graph. In the range where the two 
curves differ significantly the approximation obtained using the modified mild-slope 
equation is the closer to the solution of the linearized equations. This indicates that 
retaining the term r in (2.12) does indeed extend the range of validity of the model 
equation. 
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4.2. Ripple beds 
As mentioned in the Introduction, it was the failure of the mild-slope equation 
to predict scattering by ripple beds accurately which provoked the derivation of 
other approximation methods. In particular, certain resonances, referred to below, 
were inadequately described by the mild-slope equation. We therefore examine the 
performance of the modified mild-slope equation in relation to ripple beds. 

40 1 

The first problem to be examined is defined on setting 

h(x)  = b, S(x) = dsin(t'x) (0 < x < L), 

(in the notation of 6 3) where ho is a constant and L = 2 n n / t .  The bedform therefore 
consists of a sequence of n sinusoidal ripples about the mean depth z = -b. Note 
that when using the modified mild-slope equation or the mild-slope equation (models 
not specifically designed with ripple beds in mind) the depth function we use there is 
the total depth h - S rather than the two components h and S considered separately. 

The results presented are in the form of graphs of IRI plotted against 2k/t', this 
being twice the ratio of the wavenumber of the incident wave k and the ripple 
wavenumber t'. We present five graphs for each of the problems considered. Each 
graph corresponds to a different approximation and the labelling is as follows : 

(i) the mild-slope equation (that is, equation (2.12) with the term r omitted); 
(ii) the modified mild-slope equation, given by equation (2.12); 

(iii) the approximate version of the mild-slope equation derived in 6 3 and given by 

(iv) the approximate version of the modified mild-slope equation derived in $ 3 and 

(v) Kirby's extended mild-slope equation given in $3 by equation (3.4). 
We recall that the model equations (iii) and (iv) are considered for two reasons. 

They are directly comparable with Kirby's equation (v) as all three are based on 
perturbations about the mean depth of the ripple; and they are computationally 
cheaper, as only the wavenumber corresponding to the mean depth is required. 

However it should be noted that, by using a decomposition method (see Chamber- 
lain 1995 or Chamberlain & Porter 1995), it is only necessary to approximate 1R1 for 
the n = 1 case since it is then possible to infer the corresponding approximations to 
IRI for larger n. The computational cost is therefore of no real significance. 

Figure 2 shows results for the case d / h  = 0.32 and n = 4, for which wave-tank data 
are available by virtue of experiments carried out by Davies & Heathershaw (1984). 
The results of these experiments are shown on all five graphs in figure 2 as dots. In 
this case it is clear that all five models give good agreement at the first resonant peak 
near 2k// = 1. Only the models based on evaluating the local wavenumber at the 
actual depth h - 6 (models (i) and (ii)) detect significant second-order resonance near 
2k/t = 2. Here we use the terms second- and higher-order in the sense described by 
Guazzelli et al. (1992). 

Figure 3 gives graphs for the same problem, but with d / h  = 0.16 and n = 10. This 
is another of the cases considered by Davies & Heathershaw in their experiments. It 
is clear for these parameter values that the mild-slope equation and its approximated 
version, while correctly positioning the first-order resonance, completely fail to predict 
its magnitude. The other three models do describe that peak well but only the modified 
mild-slope equation detects any significant second-order resonance. 

The perturbation procedure which replaced (2.12) with (3.2) and the mild-slope 
equation with (3.3) is well supported in these two figures. At almost all points on 

equation (3.3); 

given by equation (3.2); 
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FIGURE 2. Comparison of computed reflection coefficients for singly periodic sinusoidal ripple with 
n = 4 and d / b  = 0.32. Corresponding experimental data produced by Davies & Heathershaw 
(1984) are shown as 0 .  

both figures it is not possible to distinguish between the two curves with the eye. 
The principal exception to this observation occurs for the modified equation near 
2 k j t  = 2, where second-order resonance occurs. None of the models based on using 
a perturbation method detect significant second-order resonance at k = 8. To O(S2) 
(the order to which equations (3.2),  (3 .3)  and (3.4) are accurate) there appears only 
to be first-order resonance. A detailed analysis of how the resonant peaks depend on 
n may be found in Chamberlain & Porter (1995). 
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FIGURE 3. Comparison of computed reflection coefficients for singly periodic sinusoidal ripple with 
n = 10 and d / b  = 0.16. Corresponding experimental data produced by Davies & Heathershaw 
(1984) are shown as 0. 

This feature suggests that problems in which second- (or higher-) order resonance 
are significant may shed more light on the current examination of the modified 
equation. A suitable class of problems from the point of view of exhibiting higher- 
order resonance is known to be that involving ripples with two Fourier components, 
in which 

with L = 2 n n / t  as before. 
d(x) = d (sin(tx) + sin(mt'x)) (0 d x d L), 
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FIGURE 4. Comparison of computed reflection coefficients for doubly periodic sinusoidal ripple 

with n = 4, m = 2 and d / h  = 0.33. 

This situation has been examined by O’Hare & Davies (1993). There exists the 
possibility of first-order resonances at 2k/t = 1 and at 2 k / /  = m, and at second order 
there are possible resonances due to the individual terms in 6 at 2k/t = 2 and at 
2k/t = 2m as well as subharmonic (or difference) resonances at 2k/t = m - 1 and 
harmonic (or sum) resonances at 2 k / t  = m + 1. These last two resonances are due to 
interactions between the two terms in 6. 

Figure 4 shows values of IRI in the case d/ho = 0.33, m = 2 and n = 4. This problem 
was considered by Guazzelli et al. (1992) who carried out numerical and wave- 
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FIGURE 5. Comparison of computed reflection coefficients for doubly periodic sinusoidal ripple 

with n = 4, rn = 2 and d/h = 0.4. 

tank experiments and by O’Hare & Davies (1993) who concentrated on numerical 
experiments, principally to demonstrate their successive-application matrix model. 
Once again we show five graphs in the arrangement described above. A comparison 
between figure 4 and the corresponding figure in OHare & Davies’ paper (figure 5(b)) 
shows that the modified mild-slope equation produces approximations very similar 
to the matrix model and thus constitutes an improvement, not only to the mild-slope 
equation, but also to Kirby’s extended mild-slope equation. In particular, the heights 
of the resonant peaks and the shift in their positions towards smaller values of 2 k / /  
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correspond to those given by the calculations of O’Hare & Davies (1993). It is 
also clear from such a comparison that the two mild-slope models ((i) and (iii)) are 
relatively unsuccessful for this problem. It is of interest to note that the models (iv) 
and (v) produce very similar graphs for this problem, both failing to detect second- 
or higher-order resonant peaks. The underestimated peak at 2k/t = 2 may well 
be due to failure to model the second-order contribution from the first-order peak 
at 2k/t = 1. Similarly the underestimated peak at 2k/t = 1 may be due to the 
second-order subharmonic contribution being poorly approximated. 

Finally, in figure 5, we consider the same doubly sinusoidal ripple bed problem 
with d / b  = 0.4, rn = 2 and n = 4. This case was also considered by the authors 
referred to in the preceding paragraph and the results are qualitatively the same as 
for the parameter values considered there. OHare & Davies state that their model for 
this case predicts peaks near 2k/t = 3 and 2k// = 4 which are too large. Comparing 
their figure for this problem (figure 5(c)) with the present figure 5 shows that use of 
the modified mild-slope equation goes some way to rectify this deficiency, by reducing 
the predicted peaks. 

The important fact to note here is that the modified mild-slope equation produces 
results which are evidently as good as those given by much more complicated models 
of the scattering process. The modified mild-slope equation is merely the mild- 
slope equation with an additional term inserted and its solutions can therefore be 
approximated very efficiently without the need to assemble and solve large linear 
systems of equations. In this respect it contrasts sharply with the methods of OHare 
& Davies (1993) and Guazzelli et al. (1992). One particular advantage of predicting 
scattering fairly accurately by means of a single equation is that analytic investigations 
are possible. Further work is in progress on the modified mild-slope equation in this 
direction. 

5. Conclusions 
Much attention has recently been given to improving the mild-slope equation, which 

has proved to be deficient for certain bed profiles. A modified mild-slope equation has 
been derived here in two different, but related, ways. By retaining a term which has 
previously been discarded, this new equation successfully predicts known scattering 
phenomena which are undetected by Berkhoffs long-standing mild-slope equation. 

One particular solution method which has been proposed for wave scattering by 
topography and which has proved successful is that in which the bed profile is replaced 
with a piecewise constant function, matching of solutions being carried out at the 
depth discontinuities (see Rey 1992 or OHare & Davies 1993, for example). This 
type of method is computationally expensive (owing to the number of steps required 
for reliable results) and can require the inclusion of the most significant evanescent 
modes to smooth the approximation near each step. In contrast, approximating the 
solution of the modified mild-slope equation can be very efficient computationally 
(see Chamberlain & Porter 1995) and permits analysis of the scattering process. 
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